• Skip to primary navigation
  • Skip to main content
Texas A&M AgriLife Research

Texas A&M AgriLife Research

  • Home
  • About
    • About AgriLife Research
    • Texas A&M AgriLife Research strategic plan
  • Research Areas
    • Bioenergy
    • Disease prevention
    • Food & Nutrition
    • Insect-Vectored Diseases
    • Land Use
    • Livestock & Plant Genetics
    • New Crops
    • Pests & Invasive Plants
    • Sustainability
    • Water
  • Regions of Texas
  • News
  • Contact

February 1, 2021 by G. Saldana

$3.9M project on self-deleting genes takes aim at mosquito-borne diseases

Texas A&M AgriLife researchers’ work to aid mosquito control efforts

mosquito-drawing-blood-from-human-skin

To control mosquito populations and prevent them from transmitting diseases such as malaria, many researchers are pursuing strategies in mosquito genetic engineering. A new Texas A&M AgriLife Research project aims to enable temporary “test runs” of proposed genetic changes in mosquitoes, after which the changes remove themselves from the mosquitoes’ genetic code.

The project’s first results were published on Dec. 28 in Philosophical Transactions of the Royal Society B, titled “Making gene drive biodegradable.”

Zach Adelman, Ph.D, and Kevin Myles, Ph.D., both professors in the Texas A&M College of Agriculture and Life Sciences Department of Entomology are the principal investigators. Over five years, the team will receive $3.9 million in funding from the National Institute of Allergy and Infectious Diseases to test and fine-tune the self-deleting gene technology.

Story continues at AgriLife Today

Filed Under: News

  • Compact with Texans
  • Privacy and Security
  • Accessibility Policy
  • State Link Policy
  • Statewide Search
  • Veterans Benefits
  • Military Families
  • Risk, Fraud & Misconduct Hotline
  • Texas Homeland Security
  • Texas Veterans Portal
  • Equal Opportunity
  • Open Records/Public Information
Texas A&M University System Member